# Applications

2.

- 1. Figures a, b, and c are polygons. Figure d is not a polygon because it cannot be traced without visiting several points more than once. Figures e and f are not polygons because they have edges that are not line segments.
- 6. Although the sides in the drawing of angle 2 are longer, the drawing of angle 1 indicates a greater turn and thus a larger angle. Mistaking length of sides in a drawing as a measure of angle size is a common misconception.

| Number of Sides<br>and Angles | Polygon Name  | Examples in the<br>Shape Set                |
|-------------------------------|---------------|---------------------------------------------|
| 3                             | triangle      | A, I, P, T                                  |
| 4                             | quadrilateral | B, G, H, J, K, L, M, N,<br>O, Q, R, S, U, V |
| 5                             | pentagon      | С                                           |
| 6                             | hexagon       | D                                           |
| 7                             | heptagon      | E                                           |
| 8                             | octagon       | F                                           |
| 9                             | nonagon       | none                                        |
| 10                            | decagon       | none                                        |
| 12                            | dodecagon     | none                                        |

### Common Polygons

- **3.** Regular polygons include: A, B, C, D, E, and F
- 4. Shapes of signs:
  - a. pentagon
  - b. square
  - c. squares (two of them)
  - **d.** equilateral triangles
  - e. trapezoids
  - f. rectangles and octagon
  - g. isosceles triangle
  - h. rectangle and equilateral triangle
  - i. square
- 5. Acute angles are 3 and 5; right angles are 2 and 4; obtuse angles are 1 and 6.

- **7. a.** Figures B, G, H, and J have only right angle corners.
  - **b.** Figures C, D, E, and F have only obtuse angle corners.
  - **c.** Figures A and P have only acute angle corners.
  - **d.** Figures Q and S have at least one angle of each type.
- 8. a. two complete rotations
  - b. one and one-half complete rotations
  - **c.** one-half of a complete turn (essentially reversing direction)
- **9. a.**  $40^{\circ}$  is closest to  $45^{\circ}$ 
  - **b.**  $140^{\circ}$  is closest to  $135^{\circ}$
  - **c.**  $175^{\circ}$  is closest to  $180^{\circ}$
  - **d.** 220° is closest to 225°
  - e.  $250^{\circ}$  is closest to  $240^{\circ}$
  - **f.**  $310^{\circ}$  is closest to  $315^{\circ}$

- **10. a.** 180°
  - **b.** 90°
  - **c.** 150°
  - **d.** 60°
  - **e.** 270°
  - **f.** 360°
  - **q.** 120°
  - **h.** 30°
  - i. right angle: b; acute angles: d and h; obtuse angles: c, e, and g
- **11.** finding degree measures by deduction

| а.  | 15°                                 | <b>b.</b> 67.5°    |
|-----|-------------------------------------|--------------------|
| c.  | 112.5°                              | <b>d.</b> 150°     |
| e.  | 240°                                | <b>f.</b> 540°     |
| 12. | <b>a.</b> $\angle BVA = 45^{\circ}$ | and $\angle AVB =$ |

- **b.**  $\angle LKJ = 80^{\circ}$  and  $\angle JKL = 280^{\circ}$
- **c.**  $\angle RQP = 120^{\circ}$  and  $\angle PQR = 240^{\circ}$

315°

- **d.**  $\angle ZYX = 160^{\circ}$  and  $\angle XYZ = 200^{\circ}$
- **13.** *x* = 150°
- **14.** *x* = 55°
- **15.**  $x = 63^{\circ}$
- **16.** *x* = 325°
- **17. a.** 15 minutes = 90°
  - **b.** 30 minutes = 180°
  - **c.** 20 minutes =  $120^{\circ}$
  - **d.** one hour =  $360^{\circ}$
  - **e.** 5 minutes =  $30^{\circ}$
  - **f.** one and one-half hours =  $540^{\circ}$
- **18.** a. 60°
  - **b.** 45°
  - **c.** 36°
- **19.**  $m \angle JVK = 60^{\circ}$
- **20.**  $m \angle JVL = 110^{\circ}$

- **21.** m∠JVM = 150°
- **22.**  $m \angle KVL = 50^{\circ}$
- **23.**  $m \angle KVM = 90^{\circ}$
- **24.**  $m \angle LVM = 40^{\circ}$
- **25.** the complement of  $\angle JVK = 30^{\circ}$
- **26.** the supplement of  $\angle JVK = 150^{\circ}$
- **27.** the complement of  $\angle MVL = 50^{\circ}$
- **28.** the supplement of  $\angle JVL = 70^{\circ}$
- 29. a. Angle 1 at 60° is larger than angle 2 at  $30^{\circ}$ .
  - b. The two angles are the same size at 135°.
  - **c.** Angle 1 at 90° is larger than angle 2 at 45°.
- **30.** a. The three angles measure 75°, 65°, and 40°.
  - **b.** The four angles measure 120°, 120°, 60°, and 60°.
- **31. a.** 50°
  - **b.** 135°
  - **c.** 20°
  - **d.** 210°
  - **e.** 170°







33. A rectangle that has perimeter 24 and one side 8 will look like this:



**34.** A triangle with  $\overline{AB} = 2$  in.,  $\overline{AC} = 1$  in., and  $\angle BAC = 75^{\circ}$  will look like this:



35. There are many triangles that have  $\angle BAC = 75^{\circ}$  and  $\angle ACB = 75^{\circ}$ . All are similar to this:



**36.** A trapezoid PQRS that has  $\angle QPS = 45^{\circ}$ ,  $\angle RQP = 45^{\circ}$ ,  $\overline{PS} = 1$  in., and  $\overline{PQ} = 2$  in. will look like this:



## **Connections**

- 37. Answers will vary. In some sense nearest of each type would be  $\frac{3}{9}$  and  $\frac{5}{15}$ .
- 38. Answers will vary. In some sense nearest of each type would be  $\frac{6}{10}$  and  $\frac{12}{20}$ .
- 39. Answers will vary. In some sense nearest of each type would be  $\frac{12}{28}$  and  $\frac{18}{42}$ .
- **40.** Answers will vary. In some sense nearest of each type would be  $\frac{15}{9}$  and  $\frac{25}{15}$ .
- **41.**  $\frac{5}{12} < \frac{9}{12}$ **42.**  $\frac{15}{35} < \frac{12}{20}$ **43.**  $\frac{7}{2} > \frac{20}{12}$

**43.** 
$$\frac{7}{13} > \frac{2}{2}$$

- **44.**  $\frac{45}{36} = \frac{35}{28}$
- 45. a. B; (point D)
  - b. H; (point D)
- 46. C
- **47.** a. 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 360 **b.**  $360 = 2^3 3^2 5$
- **c.** 210° **48. a.** 30° **b.** 180°

| 49. | $\frac{1}{2} = \frac{180}{360}$ |
|-----|---------------------------------|
| 50. | $\frac{1}{10} = \frac{36}{360}$ |
| 51. | $\frac{1}{9} = \frac{40}{360}$  |
| 52. | $\frac{1}{3} = \frac{120}{360}$ |
| 53. | <b>a.</b> $\frac{1}{4}$         |
|     | <b>b.</b> $\frac{3}{4}$         |
|     | <b>c.</b> 2                     |

- **d.** 25
- 54. Minute hand rotations
  - a. 10 minutes
  - **b.** 5 minutes
  - **c.**  $\frac{1}{12}$
  - **d.** 30°
- 55. a. Linear rulers use units like inches, feet, yards, centimeters, or meters; angle rulers use degrees (Note: in mathematical and scientific reasoning, radians).

Answers | Investigation 1

- **b.** In some sense the two measurement schemes are similar. Take a small unit of length or angle spread and find how many copies of that unit will fit into the segment or larger angle to be
- **56.** The measure of  $\angle AVB$  is 108°. The measure of  $\angle BVC$  is 72°

measured.

**57.** Both students have given reasonable answers. However, when no direction of rotation is indicated, it is customary to focus on the angle as a union of two rays with common endpoint and measure between 0 and 180 degrees.

- 58. a. 20 square units
  - b. 24 square centimeters
  - c. 20 square units
- **59.** Multiple triangles are possible.
- **60.** Multiple triangles are possible.
- **61.** Multiple triangles are possible.
- **62.** Multiple parallelograms are possible.
- **63.** Multiple parallelograms are possible.

## Extensions

#### 64.

### Common Quadrilaterals

| Sides and Angles                                               | Name          | Examples in the<br>Shape Set |
|----------------------------------------------------------------|---------------|------------------------------|
| All sides are the same length.                                 | rhombus       | B, K, V                      |
| All sides are the same length and all angles are right angles. | square        | В                            |
| All angles are right angles.                                   | rectangle     | B, G, H, J                   |
| Opposite sides are parallel.                                   | parallelogram | B, G, H, J, K, L,<br>M, N, V |
| Only one pair of opposite sides are parallel.                  | trapezoid     | O, R, S, U                   |

- 65. a. True
  - b. False
  - c. True
  - d. True
  - e. False
  - f. True. Note: By our chosen definition, a trapezoid is a quadrilateral with one and only one pair of parallel sides.
  - g. False
- 66. Variations of the Four in a Row game could take a variety of forms—more concentric circles, different benchmark angle patterns (e.g., multiples of 10°), or others that we haven't imagined.

- **67. a.** SSW is 202.5°, NNW is 337.5°
  - **b.** The ship is traveling in a direction 30° north of due west.
- **68. a.** The runway heading due west is 27; heading due east is 9.
  - **b.** Runway 6 implies a compass heading of 60°. Runway 12 implies a compass heading of 120°.
  - c. Labels for runways in opposite directions differ by 18, related to the 180° difference in their directions.

Answers | Investigation 1

**69. a.** She was about 10° off her intended course.

붉

- b. Using the scale on the map, points A and D are about 100 miles apart, points B and E are about 175 miles apart, points C and F are about 275 miles apart.
- c. If you fly 20° south of the intended course, you might end up in the Samoa Islands.